Fractal aggregation and disaggregation of newly formed ironIJIII) (hydr)oxide nanoparticles in the presence of natural organic matter and arsenic†
نویسندگان
چکیده
Water chemistry affects the nucleation kinetics, precipitate morphology, and quantity of ironIJIII) (hydr)oxide nanoparticles, directly impacting the reactive surface area of geomedia and fate of associated waterborne contaminants. In this study, we utilized in situ grazing-incidence small angle X-ray scattering (GISAXS) and complementary ex situ techniques to investigate heterogeneous ironIJIII) (hydr)oxide nucleation on quartz in the presence of natural organic matter (NOM) and arsenate. Results indicate unique fractal aggregation behavior in the systems containing NOM and precipitating ironIJIII) (hydr)oxide nanoparticles. Furthermore, the coexistence of arsenic and NOM lead to the formation of two distinct particle size ranges: larger particles dominated by arsenic effects, and smaller particles dominated by NOM effects. These new findings provide important implications for understanding the nucleation, growth, and aggregation of ironIJIII) (hydr)oxides in aqueous systems where NOM is present, such as natural surface waters and water and wastewater treatment plants. This study also offers new insight into how NOM-associated ironIJIII) (hydr)oxides can interact with aqueous contaminants such as arsenate.
منابع مشابه
Arsenic Mobilization through Bioreduction of Iron Oxide Nanoparticles
Arsenic sorbs strongly to the surfaces of Fe(III) (hydr)oxides. Under aerobic conditions, oxygen acts as the terminal electron acceptor in microbial respiration and Fe(III) (hydr)oxides are highly insoluble, thus arsenic remains associated with Fe(III) (hydr)oxide phases. However, under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)ox...
متن کاملAssessment Effect of Organic Matter and Arsenic on Transfer Coefficient, Tolerance Index and Phytoremediation in Cress (Lepidium sativum L.)
Soil contamination with heavy metals such as arsenic has harmful effects on human health and agricultural products. Arsenic (AS) is one of the heavy metals which are highly toxic and carcinogenic. This research was conducted to study the effect of organic manure on increasing the Arsenic absorption ability by Cress plant in the greenhouse of the Agriculture and Natural Resources Research Center...
متن کاملA New and Efficient Method for the Adsorption and Separation of Arsenic Metal Ion from Mining Waste Waters of Zarshouran Gold Mine by Magnetic Solid-Phase Extraction with Modified Magnetic Nanoparticles
Widespread arsenic contamination of mining wastewater of Zarshouran (West Azerbaijan province) has led to a massive epidemic of arsenic poisoning in the whole of surrounding areas. It is estimated that approximately all agriculture fields are being irrigated with the water that its arsenic concentrations elevated above the World Health Organization’s standard of 10 parts per billion. A novel ad...
متن کاملPhotoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration
Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to...
متن کاملRemoval of Mercury and Arsenic Metal Pollutants from Water Using Iron Oxide Nanoparticles Synthesized from Lichen Sinensis Ramalina Extract
Background & objectives: The import of heavy metals into various sources of drinking water supply is one of the major problems of water quality, especially in industrial areas. The aim of this study was to investigate the ability of mercury and arsenic metal pollutants to be removed from aqueous solutions using green oxide nanoparticles synthesized by green method. For this purpose, the extract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016